Positioning system DSM 160P, 200P

Linear motor drive

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidance. The linear motor DSM unit is based on the principle of a linear, synchronous AC motor.
The guiding profile is fitted with permanent magnets as stator (secondary part). The carriage is fitted with the actuator (primary part). The magnetic attraction causes a force between carriage and guiding profile also in the absence of current. This force can be used for the initial tension of the bearings. Several carriages (primary parts) can be driven independently on one guiding profile. A special design of the carriage geometry results in the guiding profile being covered. This prevents small parts from falling into the system, so that clean-room applications are possible.

Fitting position: As required. Max. length 3.000 mm without joints.

Carriage mounting:

Unit mounting:

Carriage support:

By threaded holes.
By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.
In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position. For longer carriages the number of runner blocks can be increased.
Repeatability $\pm 0,05 \mathrm{~mm} \mathrm{~mm}$. Repeated accuracy max. $\pm 0,05 \mathrm{~mm}$ up to 3.000 mm

Forces and torques	Size	160			200		
	Motor size	1	2	3	1	2	3
	permitted dyn.Forces*	10000 km			10000 km		
$\begin{aligned} & \mathrm{Mx} \\ & \mathrm{~F}_{\mathrm{z}}=\text { external force by load } \\ & \mathrm{F}_{\mathrm{o}}=\text { magnetic altraction force } \\ & \mathrm{F}_{\mathrm{zm}}=\text { maximum force in conside- } \\ & \mathrm{F}_{\mathrm{zm}}=\mathrm{F}_{\mathrm{z}}+\mathrm{F}_{\mathrm{a}} \end{aligned}$	F_{f} (N)	1200	1800	5500	3600	5500	11000
	$\mathrm{F}_{\text {zn }}(\mathrm{N})$	1590	2800	7030	4990	7640	13860
	$\mathrm{F}_{2}(\mathrm{~N})$	1775	1775	3550	4092	4092	8184
	$M_{\text {c }}(\mathrm{Nm})$	160	128	153	357	231	462
	M, (Nm)	373	351	532	769	556	1540
	$M_{2}(\mathrm{Nm})$	222	261	328	585	654	906
	Number of runner blocks	4	4	8	4	4	8
	All forces and torques related to the following:						
	$\begin{aligned} & \text { existing values } \\ & \text { table values } \end{aligned} \frac{F_{y}}{F_{y_{d y n}}}+\frac{F z m}{F z m_{\text {dyn }}}+\frac{M x}{M x_{\text {dyn }}}+\frac{M y}{M y_{\text {dyn }}}+\frac{M z}{M z_{\text {dyn }}} \leq \mathbf{1 , 5}$						
	Motor specifications F_{x}						
	Motor size	1	2	3	1	2	3
	Carriage weight (kg)	4,8	5,3	7,1	10,9	11,4	16,9
	Weight primary part (kg)	1,4	3,7	5,2	4,5	6,4	8,4
	permanent (N)	115	271	406	383	574	760
	Max. (N) 1s	323	607	911	868	1301	1735
	Moving force without current						
	N	30	30	60	40	40	80
	Geometrical moments of inertia of aluminium profile						
	${ }_{1} \mathrm{~mm}^{4}$	$2,13 \times 10^{6}$			$4,81 \times 10^{6}$		
	$1 . \mathrm{mm}^{4}$	$12,3 \times 10^{6}$			$26,0 \times 10^{6}$		
	Elastic modulus $\mathrm{N} / \mathrm{mm}^{2}$	70000					

* referred to life-time

[^0]

Positioning system DSM 160P, 200P

*For slide nuts refer to chapter 2.2 page 2
Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	A	B	C	E	F	G	H	J	K	$\underset{\text { for }}{M}$	$\begin{gathered} \mathbf{N} \\ \text { for } \end{gathered}$	$\begin{gathered} 0 \\ \text { for } \end{gathered}$	R	P1	P2	U	Basic weight Motor size 1/2/3	Weight per 100mm Motor size 1/2/3
DSM 160P	$Q+108$	160	144	76	90	76	106	11	104	106	M 6	M 8	M 8	107	9	57	80	12,1/15/20	1,7/2,1/2,1
DSM 200P	$Q+126$	200	182	76	140	96	126	15	128	129	M 8	M 10	M 10	130	10	62	100	26,1/29,6/36,8	2,8/2,8/2,8

0 Choice of guide body profile:
(0)

without internal profile and cover bands
(1)

without internal profile without cover bands

Size	M1	M2	M3	M4
DS 120	52	45	64	13
DS 160	70	60	85	17
DS 200	84	77	100	15

Helper table for provided motors
Stainless version upon request.

1 Measurement system:

(1) Measurement system LE 100/1 5 Resolution 0.05
(2) Measurement system LE $100 / 1$ 10,5-30V Resolution 0.05
(4) Measurement system
provided by customer

1 Plug:
 (1) Plug Pos. 1

(2) Plug Pos. 2
(3) open unconnected cable end

1 Motor size:
(1) Motor size 1 with Q_{1}
(2) Motor size 2 with Q_{2}
(3) Motor size 3 with Q_{3}
(4) Supply with Q_{1} *
(5) Supply with $Q_{2}{ }^{*}$
(6) Supply with Q_{3} *

* $=$ provided by customer

Dimensioning criteria for motor output						
	$\mathbf{I}_{\mathrm{p}} \square$	$\mathbf{b}_{\mathrm{p}} \square$	$\mathbf{h}_{\mathrm{ps}} \square$	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
160	$\mathbf{Q}-70$	$\mathbf{7 1}$	50	316	360	461
200	$\mathbf{Q}-70$	85	$\mathbf{6 2}$	410	444	610

$\left.\right|_{p}=$ length primary part; $b_{p}=$ width primary part;
$h_{p s}=$ height primary part + height secondary part

+ interspaces primary-/secondary part
For standard carriage length see ' Q ' in table.
The carriages can be delivered in any non-standard length upon request; the longer the carriage, the greater the load capacity. For linear encoder refer to chapter 9.1.

1500 Basic length + stroke $=$ total length

DSM	160 16	0	0	1	1	0	0	1	01500

Sample ordering code:

DSM160P, Bahr Modultechnik Linear motor, standard body profile, Measurement system LE 100/1 5V, Plug Pos. 1, motor size 1, 1094 mm stroke
 frei

[^0]: Deflection:
 L

 | $f=\frac{F * L^{3}}{E * \mid * 192}$ | |
 | :--- | ---: |
 | $f=$ deflection | (mm) |
 | $F=$ load | (N) |
 | $\mathrm{L}=$ free length | $\left(\mathrm{mm}^{2}\right)$ |
 | $\mathrm{E}=$ e elastic modulus 70000 | $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ |
 | $I=$ second moment of area | $\left(\mathrm{mm}^{4}\right)$ |

